Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(12): 7940-7963, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38454947

RESUMO

Human health and ecology are seriously threatened by harmful environmental contaminants. It is essential to develop efficient and simple methods for their detection. Environmental pollutants can be detected using photoelectrochemical (PEC) detection technologies. The key ingredient in the PEC sensing system is the photoactive material. Due to the unique characteristics, such as a large surface area, enhanced exposure of active sites, and effective mass capture and diffusion, porous materials have been regarded as ideal sensing materials for the construction of PEC sensors. Extensive efforts have been devoted to the development and modification of PEC sensors based on porous materials. However, a review of the relationship between detection performance and the structure of porous materials is still lacking. In this work, we present an overview of PEC sensors based on porous materials. A number of typical porous materials are introduced separately, and their applications in PEC detection of different types of environmental pollutants are also discussed. More importantly, special attention has been paid to how the porous material's structure affects aspects like sensitivity, selectivity, and detection limits of the associated PEC sensor. In addition, future research perspectives in the area of PEC sensors based on porous materials are presented.

2.
Chemosphere ; 288(Pt 1): 132509, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34627811

RESUMO

Herein, polypyrrole/titanium oxide/reduced graphene oxide (PTi/r-GO) electrodes were prepared and successfully applied for the photoelectrocatalytic (PEC) degradation of methyl orange (MO) under visible light. Polypyrrole-TiO2 composites rich in p-n heterojunctions were first prepared, then modified with r-GO to improve the electrical conductivity and facilitate charge separation under visible light irradiation. The obtained PTi/r-GO composites were then deposited onto a titanium mesh, which served as the working electrode in PEC experiments. A MO removal efficiency of 93% was achieved in 50 min using PTi/r-GO electrode under PEC conditions (Xe lamp, λ > 420 nm, bias of 0.6 V, 0.1 M Na2SO4 electrolyte), which was far higher than MO removal efficiencies under electrocatalytic oxidation (22%) or photocatalytic oxidation (47%) conditions. This confirmed that excellent activity of the PTi/r-GO electrode under PEC conditions was due to a combination of electrochemical and photocatalytic oxidation processes (involving •OH and •O2- generation). Further, PTi/r-GO was very stable under the applied PEC conditions, with the MO removal efficiency remaining >90% after five cycles. PEC degradation pathways for MO on PTi/r-GO were explored, with a number of key intermediates in the MO mineralization process identified. Results demonstrate that PEC electrodes combining p-type polypyrrole, n-type TiO2 and rGO are very effective in the treatment of hazardous organic compounds in wastewater.


Assuntos
Polímeros , Titânio , Catálise , Corantes , Eletrodos , Grafite , Luz , Pirróis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...